

Intraoperative Imaging for Patient Safety and OR Quality Assurance

Jeff Siewerdsen, PhD

John C. Malone Professor of Biomedical Engineering Vice-Chair for BME Clinical and Industry Programs Computer Science, Radiology, and Neurosurgery Johns Hopkins University

Disclosures

Funding Support

National Institutes of Health

R01-EB-017226 (Imaging for OR Safety and QA)

R01-CA-112163 (Dual-Energy CT)

R01-EB-018896 (High-Resolution CBCT – W Zbijewski, PI)

U01-EB-018758 (Sub-mSv CT – JW Stayman, PI)

Siemens Healthineers

Mobile and Robotic C-Arms

Medtronic

Intraoperative Imaging and Registration

Carestream Health

CBCT of the Extremities

CBCT of Head Trauma

Advisory and Licensing

Siemens Healthineers Carestream Health Elekta Oncology Precision X-Ray

An Enormous (and Growing) Market

0.5M spinal fusion surgeries / yr \$12B / year (70% increase 2001 – 2011) 7.5% compound annual growth by 2019 THE WALL STREET JOURNAL.

Rate of Spine Surgery Soars

High Range in Variability (Quality)

Up to 53% of patients have comorbidity Approximately 8-25% of patients rehospitalized High variability in surgical outcomes

Spinal fusions serve as case study for debate over when certain surgeries are necessary

A Major Source of Adverse Events

Adverse event: 16-28%

Device malplacement: ~2-16%

Revision surgery: ~1 in 150

Wrong-level surgery: ~1 in 3000

("Unintended-level" surgery)

COCHES

The Washington Post

Researchers: Medical errors now third leading cause of death in United States

Wong et al, "Medical errors in orthopaedics. Results of an AAOS member survey," J Bone Joint Surg Am (2009)

Clinical Translation: LevelCheck

LevelCheck: Extensions

msLevelCheck (Deformable)

Multi-stage pyramid
Phantom and clinical pilot studies

Ketcha et al., Phys Med Biol 62(11)(2017)

MR-LevelCheck (MRI-to-radiograph)

Simple segmentation + robust similarity Clinical studies

De Silva et al., Phys Med Biol 62(2)(2017)

3D-2D Registration for Intraoperative QA

3D-2D Registration for Intraoperative QA

2D Overlay

3D Overlay

Uneri et al. Phys Med Biol (2014) and (2015)

Emerging Landscape of Surgical Robotics

Mazor-X / Medtronic

Current Approaches

Integration with surgical navigation Robot used for precise positioning of trans-pedicle instrumentation

Potential Advantages

Precision, safety, and workflow

Potential Limitations

Precision and workflow are limited by (conventional) navigation using surgical trackers

Surgical Robotics: without Trackers

X-Ray Guided Surgical Robot

Image-Guided Surgical Robotics

Image-Guided Surgical Robotics

A Need for Automatic Planning

J. Goerres et al. Phys Med Biol (2017)

And an Opportunity for Intraoperative QA

From Image Guidance

to Safety, Quality, and Data Science

That which is measured improves.

Expanding role of intraoperative imaging for safety and QA

Broad utility – mobile imaging systems and existing workflow

Safety – independent check and decision support

Guidance – without trackers

Overcome workflow bottlenecks and better enable robotic assistance

Check vs complications, opportunity to revise in the OR

OR quality assurance (ORQA)

Image registration → Image analysis / analytics

Expanding role of imaging in surgical data science

Quantitative evaluation of the surgical product

Correlation with outcomes measurement

Data-driven understanding large variations in outcome

Data-driven patient selection, planning, etc.

Acknowledgments

Biomedical Engineering

The I-STAR Lab The Carnegie Center for Surgical Innovation

Neurosurgery

N Theodore, JP Wolinsky, D Sciubba, T Witham A Cohen, M Luciano, WS Anderson, X Ye, H Brem **Orthopaedic Surgery**

G Osgood, B Shafiq, J Ficke J Khanna, L Riley Radiology J Carrino, S Demehri, N Aygun, C Weiss, K Hong

Neuroscience

R Stevens, V Koliatsos

Computer Science and ECE

R Taylor, G Hager, P Kazanzides J Prince

