Quantitative molecular imaging biomarkers and impact on patient safety

Robert Jeraj

Professor of Medical Physics, Human Oncology,

Radiology and Biomedical Engineering

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

University of Wisconsin Carbone Cancer Center, Madison, WI

robert.jeraj@fmf.uni-lj.si; rjeraj@wisc.edu

Type of imaging (biomarkers)

Qualitative imaging (Diagnostics)

Quantitative imaging (Quantitative Imaging Biomarkers)

Qualitative imaging chain

Quantitative imaging chain

Main issues for Quantitative Imaging Biomarkers (QIB)

Imaging Equipment ≠ Measurement Device

Measurement Device:

- Specific measurand(s) with known bias and variance (confidence intervals)
- Specific requirements for reproducible quantitative results
- Example: a pulse oximeter

Imaging Equipment:

- Historically: best image quality in shortest time (qualitative)
- No specific requirements for reproducible quantitative results (with few exceptions)

QIB challenges

General QIB challenges:

- Lack of detailed assessment of sources of bias and variance
- Lack of standards (acquisition and analysis)
- Highly variable quality control procedures
- QC programs / phantoms, if any, typically not specific for quantitative imaging
- Little support (historically) from imaging equipment vendors
- No documented competitive advantage of QIB (regulatory or payer)
- All lead to varying measurement results across vendors, centers, and/or time

QIB challenges

Other QIB challenges:

- Cost of QIB studies (comparative effectiveness) / reimbursement
- Radiologist acceptance
 - Limited number of use cases for QIBs vs. conventional practice
 - QIBs are not part of radiologist education & training
 - The software and workstations needed to calculate and interpret QIBs are often not integrated into the radiologist's workflow
 - Clinical demand on radiologists is high --- "time is money"

Consumer expectations of QIB

- Oncologists (94%) expect some or all tumors to be measured at the time of standard initial clinical imaging. (Jaffe T, AJR 2010)
- Pulmonologists desire CT-derived quantitative measures in COPD and asthma patients. (ATS/ERS Policy statement, Am J Resp Crit Care Med 2010)
- Hepatologists desire quantitative measures of liver fat infiltration (Fitzpatrick E, World J Gastro 2014)
- Rheumatologists desire quantitative measures of joint disease (Chu C, JBJS: J Bone Joint Surg 2014)
- Neurologists and psychiatrists desire quantitative measures of brain disorders (IOM Workshop, August 2013).
- Regulatory agencies desire more objectivity in interpretations.

Problem: QIB uncertainties

Reducing QIB uncertainties

Harmonization

Harmonization of acquisition

 Minimize limitations due to different scanner hardware and software

Harmonization of scanning protocols

 Creating harmonized imaging protocols, which need to be tuned to specific scanners

Harmonization of image analysis

 Unifying image analysis protocols, which often means centralized analysis

Harmonization of reporting

Standardized reporting, otherwise not comparable data

How much variability is there?

SNMMI's Clinical Trials Network (CTN) sent the same phantom to 170 sites, and collected and analyzed the PET/CT images. **B**

Sunderland and Christian 2015, J Nucl Med 56: 145-152.

How much variability is there?

SNMMI's Clinical Trials Network (CTN) sent the same phantom to 170 sites,

and collected and analyzed the PET/CT images. 10 mm right lung 18% Mid-range 10 mm left lund Percent of lesions with SUV_{max} in range 16% **High end TOF** Early era PET/CT 10% High-end ToF PET/CT 8% Mid-range PET/CT PRF Reconstruction 6% **PRF** 4% 2% Average: 1.5 1.6 2.8 SUV_{max} bins for 10 mm right lung lesion

Sunderland and Christian 2015, J Nucl Med 56: 145-152.

Typical academic site (UW example)

Note: scanners have already been tuned to fall within ACR's guidelines

Scanner harmonization (phantom)

ACR phantom scanned on DVCT and D710

Harmonized D710

Harmonization changes values!

Harmonization changes values!

Example: lung cancer patient

Example: lung cancer patient

Response classification

Response classification

Response classification

Is normalization able to capture the same changes that harmonization does?

Harmonization vs normalization

Method	Changed Classification
Harmonization	35
Liver Normalization	17
Aorta Normalization	17

Conclusions

- Quantitative Image Biomarkers (QIB) are needed for assessment of treatment response
- Harmonization is necessary for decreasing uncertainties of QIB (e.g., QIBA profiles)
- Harmonization directly impacts clinical outcome evaluation

• QIBs directly impact patient safety!